
©2016 Published in 4th International Symposium on Innovative Technologies in
Engineering and Science 3-5 November 2016 (ISITES2016 Alanya/Antalya - Turkey)

*Corresponding author: Address: Roketsan Inc., PK 30, Elmadağ, 06780, Ankara TURKEY E-mail address:

kaan.gorur@roketsan.com.tr, Phone: +903128605500

HIMES: HLA Interface for Mathematical and Engineering Simulation Tools

*1Bilge Kaan Gorur
1Roketsan A.S., PK 30, Elmadag, 06780, Ankara, Turkey

Abstract

Evolving technology and large scale simulations that require high computational power made

distributed computing indispensable. Developing distributed simulations has numerous advantages,

such as time efficiency that is gained by parallel development, and loosely coupled subsystems that

can be reused in different projects. Therefore, some interoperability and reusability standards have

been proposed in last decades. High level architecture (HLA) and distributed interactive simulation

(DIS) are the most known interoperability standards. Although this kind of standards are well-known

and widely used by especially software and computer science researchers, other disciplines do not use

them so often, because popular engineering simulation tools do not provide an interface to those

standards. In this paper, we present a distributed simulation interface that has been developed using a

few open source software. The interface that we propose can connect model based simulation

development tools with HLA standard.

Key words: Distributed simulation, interoperability, reusability, model-based design, high level

architecture

1. Introduction and Background

Parallel and distributed simulation (PADS) is one of the most studied topics in modeling and

simulation (MODSIM) world. There are two main factors that make researchers to need PADS.

The first one is insufficiency of the computational power of single computing nodes. Therefore,

researchers need many computational resources when they would like to simulate their large

scale models, such as computational fluid dynamics. To overcome this problem, researchers bring

computing nodes together via a network and leverage the total computational power of them. The

second factor is the necessity of interoperable simulations. Researchers needed to run their

models together with other models that have been developed by various researchers, departments,

companies and countries to extend their work [1]. These two factors made PADS more popular in

last two decades [2]. This paper focuses the interoperability and reusability of distributed

simulations rather than parallel simulation techniques.

To handle interoperability and reusability challenges, MODSIM researchers created some

standards, architectures and protocols, such as high level architecture (HLA), data distribution

service (DDS) and distributed interactive simulation (DIS) [3, 4, 5]. Simulation developers who

can adapt their model into these standards are able to run different models together.

Interoperability standards basically define the communication and interaction rules among

distributed simulation nodes that are known as federates in HLA. In this study, we have used

HLA for our distributed simulation infrastructure, because we think that HLA is very popular and

B. K. GORUR / ISITES2016 Alanya/Antalya - Turkey 1270

widely used by the community. A brief comparison between HLA and similar approaches is

given in Table 1 and 2. The detailed comparisons can be also found in [6, 7, 8].

Table 1. Main differences between HLA and DIS [6]

HLA DIS

A central manager, namely RTI, exists No central server

Simulation application is independent from

communication protocol.

Transmission of information packets are performed

with a specified protocol, namely protocol data units

(PDU)

More scalable thanks to data declaration management Less scalable because of the dense network traffic

Wider range of simulations (human-in-the-loop,

constructive, real-time, non-real time)
Focuses on real-time virtual simulations

Reliable TCP/IP communication Unreliable UDP communication

Point to point communication Broadcasting for publication

Table 2. Main differences between HLA and DDS [7, 8]

HLA DDS

APIs for federation save/restore and synchronization

point

No APIs for federation save/restore and

synchronization point

API for time management No API for time management

Less QoS (quality of service) policies More QoS policies

Dependency on federation object model (FOM) No dependency of global knowledge

Region management mechanism Content-based subscription

Static declaration of FOMs Fully dynamic discovery

The first version of HLA standard, as known as HLA 1.3, was sponsored by US Defense

Modeling and Simulation Office and published in 1998 [3]. Then, HLA was superseded by IEEE

and published as IEEE 1516 standard in 2000. This HLA version was extended to the current

version of HLA in 2010 (also known as HLA 1516-2010 or HLA Evolved) [4]. The detailed

history and evolution of distributed simulation standards can be found in [9]. HLA standard

proposes to have a Run-Time Infrastructure (RTI) that manages the coordination of federates in a

distributed simulation system. For interoperable simulations, federates have to make an

agreement that is called federation agreement on how they are going to share objects and

interactions. The federation agreement includes federation object model that defines objects,

interactions and data types [10].

HLA’s functional interfaces between RTI and federates are arranged into these seven groups [4]:

 Federation management is responsible for federation lifecycles. It provides services for

creating, modifying, synchronizing and deleting a federation that federates can join.

 Declaration management is responsible for regulating publishing and subscribing actions.

It provides services for declaring what kind of objects or interactions will be produced and

B. K. GORUR / ISITES2016 Alanya/Antalya - Turkey 1271

consumed by federates.

 Object management is interested in registering, discovering and deleting object instances;

updating and reflecting objects’ attributes.

 Ownership management is responsible for managing the responsibility of updating and

deleting object instances.

 Time management provides services for advancing simulation time of federates.

Conservative or optimistic time management techniques can be preferred by federates.

 Data distribution management is interested in efficient routing of data by organization of

regions so that federates can survive irrelevant data.

 Support services are interested in miscellaneous services, such as starting-up/shutting-

down RTI, manipulating regions and making callbacks from RTI to federates.

The HLA standard provides application programmer’s interfaces (API) for some well-known

object oriented programming languages, including Java and C++, so object-oriented software

developers can develop HLA compliant models. However, developers who should work with

other kind of languages/tools cannot connect their models to an HLA infrastructure as easy as

object-oriented developers. For instance, employing HLA in advanced engineering tools, such as

Matlab and Scilab, requires an extra interface to HLA. Similarly, Simulink and Xcos that are

model-based development tools of Matlab and Scilab require that kind of interface, too. These

two tools allow developers to implement simulations with model-based design techniques by

using block diagrams, because model-based design makes developer to create and modify models

faster [11, 12]. Therefore, creating an interface to HLA from engineering software and their

model-based development tools is crucial for interoperability of engineering simulations.

In this paper, we present a distributed simulation interface that can connect some well-known

engineering tools and HLA standard. This interface, namely HLA Interface for Mathematical and

Engineering Simulation Tools (HIMES), has been developed by using open source software.

Thanks to HIMES, developers can connect and run their models that have been developed in

Matlab, Simulink, Scilab and Xcos together via HLA standard. The rest of this paper is structured

as follows: in Section 2 some of the related works in the literature and example usage of HLA are

pointed out. Next section gives detailed information about how we have implemented HIMES.

Finally, we discuss the advantages of HIMES and our future plans in Section 4.

2. Related Work

Interoperability and reusability have been widely studied by MODSIM community for several

years. Although numerous studies can be found in the literature, we gave a place to some public

and large scale examples here. One of the large scale distributed simulation studies in NATO can

be found in [13], also known as Exercise First Wave. 15 sites from 7 countries (US, Canada,

Netherlands, Italy, France, Germany and UK) participated in this exercise that was performed for

aircrew mission training. Since Exercise First Wave was one of the earliest and largest exercises

with HLA, it enabled testing of HLA in a unique and demanding environment [13].

B. K. GORUR / ISITES2016 Alanya/Antalya - Turkey 1272

Regarding to HIMES-like tools, ForwardSim’s HLA Toolbox (for Matlab) and HLA Blockset

(for Simulink) makes a connection between RTI and Matlab/Simulink [14]. Both of them were

developed to connect interoperable and reusable simulation models with advanced engineering

tools. A similar study for Scilab can be found in [15]. In that study, Theppaya et al. proposed to

integrate RTI services with Scilab. Ravn et al. also provides a DIS interface to Simulink for

simulation visualization [16]. Differently from those studies, HIMES provides an interface to

Scilab’s model based development tool Xcos that is a widely used open source alternative to

Simulink. HIMES serves some Xcos blocks for developers to use HLA services in their

simulation models. In short, HIMES can be used with any of Matlab, Scilab, Simulink and Xcos;

and can be extended for any other engineering tools that can make Java function calls.

Parallel and distributed computation studies for Scilab and Xcos are in very early steps. The

paper in [17] is one of the first distributed simulation studies for Scilab. Mukbil et al.

implemented a networking module that allows communication between Scilab models via UDP

messages. To this end, we think that our study is also going to pave the way for parallel and

distributed simulation studies for Scilab and Xcos.

3. HLA Interface for Mathematical and Engineering Simulation Tools (HIMES)

As we have mentioned in previous sections, a bridge between engineering simulation tools and

distributed simulation standards is necessary for interoperability and reusability. So, we have

being developed an interface for Matlab, Scilab and their model based design tools Simulink and

Xcos. Since we aimed to develop a flexible HLA interface, HIMES can be also adapted for other

tools easily. In case developers would like to use HIMES with other tools, they should do only

these two things: importing HIMES library (a jar file) into their environment and creating the

code or block that calls the related HIMES function which is a bridge to Portico RTI from the

tool that he/she would like to use.

3.1. Architectural View of HIMES

One of the main focuses of this work is showing that this kind of interface can be done by using

open source or free software. To this end, we preferred to use an open source RTI library, Portico

RTI [18]. We have implemented HIMES with Java programming language because of three main

reasons. The first one is Portico RTI has been developed with Java and C++, so we were free to

choose one of them. Secondly, Java is a platform-independent language and can be used in

Windows or Unix-based computers. The last reason is that the tools like Matlab, Scilab and their

simulation modules (Simulink and Xcos) can import libraries and call functions that have been

developed with Java. Therefore, integrating HIMES with both Matlab and Scilab can be done in a

few steps easily. Fig. 1 shows how the HIMES takes a place in the distributed simulation

environment.

In our design, a federate in the system (master federate in Fig. 1) should be different from the

others and manages the simulation. For simplicity reason we provide a basic master federate that

B. K. GORUR / ISITES2016 Alanya/Antalya - Turkey 1273

creates and destroys the federation in Java. After it starts to run, the other federates are waited to

be joined the federation. HIMES has also interface for federation management service and allows

developers to implement their own master federate.

Figure 1. Architectural view of distributed simulation components and HIMES

3.2. HLA Services Provided by HIMES

In HIMES, we did not allow developers to use all of the HLA services, because some of them

will not be needed so often by them. The allowed HLA functions can be seen in Table 3. In this

table, function type refers to the caller of the function. The function type that is specified as

“Call” means that it is called by federates and responded by RTI. “Callback” type is the opposite,

that is, the function is called by RTI to the federate ambassador.

Federates interact with each other according to the FOMs that should be defined before the

federation execution starts. The FOM should be specified in a text file that is prepared according

to the format that Portico RTI recognizes. This file should be placed in the same directory with

models that have been developed by Matlab, Scilab, Simulink or Xcos.

HIMES provides an interface for model based development tools of Matlab and Scilab, too. To

this end, we implemented some HLA blocks for Simulink and Xcos. An example usage of

HIMES with Scilab and Xcos is given in Fig. 2 and 3. Fig. 2 is the Scilab code that manages the

initialization and termination of an Xcos federate. The federate firstly joins the federation that has

been already started by the master federate. The declaration of publishing and subscribing

attributes are also specified in this code. In this example, the federate publishes and subscribes to

the same attribute. Next, an object is registered and the RTI is notified about it. After these

B. K. GORUR / ISITES2016 Alanya/Antalya - Turkey 1274

operations, the simulation that has been modeled with Xcos as in Fig. 3 is executed. The green

colored blocks are HLA related blocks. In this dummy model, the “hlaUpdateAttributeValues”

block updates objectHandle’s attributeHandle to the output of the square root of a sinus generator

block at every time step. Next, advancing federate’s time is requested from RTI by

“hlaAdvanceTime” block. When the RTI lets the federate advance time, the federate is free to

process the next time step. During the execution of the “hlaAdvanceTime” block, callbacks from

RTI to the federate ambassador are also performed. Lastly, the execution of Xcos model is

terminated and the federate resigns federation as in Fig. 2.

3.3. Limitations and Missing Services

Although we have tried to design HIMES as a flexible tool, it comes with some limitations that

we have not handled, yet. One of them is the lack of ownership management service of HLA. The

only reason of this lack is that we do not transfer the ownership of objects and attributes in our

experiments. Similarly, we have not implemented some other services of HLA that are

unnecessary for us, yet. Optimistic time management and interaction management are some of

these unimplemented services.

The other limitation of HIMES is forcing developers to run their models with the same ordinary

differential equation (ODE) solver. Since ODE solvers are used in time management of the

simulations, we had to force them to be the same for synchronizing global time of the simulation

in a proper way.

4. Conclusion and Future Work

In this study, we have developed an interface to some well-known advanced engineering tools for

being able to create distributed simulations. We preferred to employ HLA standard to make our

simulations interoperable and reusable. One of the most prominent features of HIMES is that it

has been implemented using open-source software, such as Portico RTI and Scilab. Besides,

HIMES is integrated with model-based design tools Simulink and Xcos that enable rapid

simulation development. Therefore, developers who prefer to use those tools are able to integrate

their models with HLA and interoperate various models. Similar to Matlab and Scilab, other

engineering tools can be easily integrated with HIMES, if they can call Java functions.

Currently HIMES is being used as a prototype and we are planning to complete integration and

system tests of HIMES in the future. Next, we are going to implement some interfaces for

advanced time management mechanisms to run simulations faster. For instance, Time Warp

algorithm [19] is a scalable time management mechanism and simulations that enable it can run

faster than usual simulations in some cases. On the other hand, providing interoperability of

models that have different ODE solvers is also a challenge that we are planning to overcome in

the next versions of HIMES.

In addition to technical improvements, we are going to handle distributed simulation

B. K. GORUR / ISITES2016 Alanya/Antalya - Turkey 1275

development processes, such as HLA FEDEP (Federation Development and Execution Process)

[20] and DSEEP (Distributed Simulation Execution and Engineering Process) [21]. Our goal is

making HIMES to allow developing distributed simulations conforming to these processes.

Table 3. Interfaced HLA services in HIMES

HLA Service Name Function Type FunctionName

Federation Management

Call * createFederationExecution

Call joinFederationExecution

Call resignFederationExecution

Call destroyFederationExecution

Call registerFederationSynchronizationPoint

Callback ** synchronizationPointRegistrationSucceeded

Callback announceSynchronizationPoint

Call synhronizationPointAchieved

Callback federationSynchronized

Time Management

Call timeAdvanceRequest

Callback timeAdvanceGrant

Call nextEventRequest

Call queryFederateTime

Call queryLookahead

Call modifyLookahead

Call queryLBTS

Call queryMinNextTimeEvent

Call enableTimeConstrained

Call enableTimeRegulation

Declaration Management

Call getObjectClassHandle

Call getAttributeHandle

Call publishObjectClass

Call subscribeObjectClassAttributes

Callback startRegistrationForObjectClass

Callback stopRegistrationForObjectClass

Call unpublishObjectClass

Call unsubscribeObjectClass

Call getInteractionClassHandle

Object Management

Call registerObjectInstance

Call discoverObjectInstance

Callback turnUpdatesOnForObjectInstance

Call deleteObjectInstance

Call requestClassAttributeValueUpdate

Callback provideAttributeValueUpdate

Call requestObjectAttributeValueUpdate

Call updateAttributeValues

Callback reflectAttributeValues

Data Distribution

Management

Call createRegion

Call notifyAboutRegionModification

Call deleteRegion

Support Services
Call evokeCallbacks

Call evokeMultipleCallbacks

* Federate’s function. This function is called by any federates

** Callback function. This function is called by RTI to notify federates

B. K. GORUR / ISITES2016 Alanya/Antalya - Turkey 1276

Figure 2. The Scilab code that initializes an Xcos federate

Figure 3. A sample block diagram of HLA compliant Xcos model

// Import HLA library and HLA interface for Scilab

javaclasspath(strcat([pwd(), "\lib\portico.jar"]));

javaclasspath(strcat([pwd(), "\lib\scilabHLAInterface.jar"]));

jimport rs.hla.ScilabFederate;

jimport rs.hla.ScilabFederateAmbassador;

// Create a new federate object

federate = ScilabFederate.new();

fomsPath = {'foms/ObjectModel.xml'};

// Create object and attribute handles for publish/subscribe mechanisms.

objectClassHandle = jinvoke(federate, 'getObjectClassHandle',

 'HLAobjectRoot.MyObject');

attributeHandle = jinvoke(federate, 'getAttributeHandle',

objectClassHandle, 'myAttribute');

// Join federation; declare publishing and subscribing objects

jinvoke(federate, 'joinFederation', 'FEDERATION_NAME', 'ScilabFederate',

 fomsPath);

jinvoke(federate, 'publish', objectClassHandle, attributeHandle);

jinvoke(federate, 'subscribe', objectClassHandle, attributeHandle);

// Notify RTI about an object has been created.

objectInstanceHandle = jinvoke(federate, 'registerObjectInstance',

objectClassHandle, attributeHandle, updatedValue);

// Run HLA compliant Xcos model

importXcosDiagram("Model.xcos");

scicos_simulate(scs_m);

// Resign federation

jinvoke(federate, 'resignFederation', 'FEDERATION_NAME');

B. K. GORUR / ISITES2016 Alanya/Antalya - Turkey 1277

References

[1] Fujimoto RM. Parallel and distributed simulation systems. 1st ed. New York: John Wiley &

Sons, Inc; 1999.

[2] Fujimoto RM. Research challenges in Parallel and Distributed Simulation. ACM Transactions

on Modeling and Computer Simulation; 2016.

[3] Department of Defense, Defense Modeling and Simulation Office (DMSO). High Level

Architecture Interface Specification, Version 1.3; 1998.

[4] IEEE 1516-2010. IEEE Standard for Modelling and Simulation (M&S): High Level

Architecture (HLA); 2010.

[5] IEEE 1278. IEEE Standard for Distributed Interactive Simulation (DIS); 1995.

[6] Jense JG, Kuipers NHL, Dumaij ACM. DIS and HLA: Connecting people, simulations and

simulators in the space, military and civil community. In Proc. 48th International Astronautical

Congress; 1997

[7] Corsaro A, Martines-Salio JR. Distributed simulations with DDS and HLA. PrismTech

Webcast. http://www.prismtech.com/. As of 11th Oct 2016.

[8] Joshi R, Castellote GP. A comparison and mapping of data distribution service and high-level

architecture. Real-Time Innovations Inc.; 2006.

[9] Hollenbach JW. Inconsistency, Neglect, and Confusion; A Historical Review of DoD

Distributed Simulation Architecture Policies. In Proc. Spring Simulation Interoperability

Workshop, San Diego, CA; 2009.

[10] Department of Defense, Defense Modeling and Simulation Office (DMSO). RTI 1.3 – Next

Generation Programmer’s Guide Version 3.2; 2000.

[11] Hutchinson J, Whittle J, Rouncefield M. Model-driven engineering practices in industry:

Social, organizational and managerial factors that lead to success or failure. Science of Computer

Programming; 2014.

[12] Schmidt DC. Model-driven engineering. IEEE Computer; 2006; 39:2.

[13] Greschke DA, Cerutti S. Aircrew Mission Training via Distributed Simulation (MTDS)

Development of the Multi-Country Complex Synthetic Environment. NATO RTO HFM

Symposium on Advanced Technologies for Military Training; 2003.

[14] ForwardSim. http://www.forwardsim.com/. As of 19th Sep 2016.

[15] Theppaya T, Tandayya P, Jantaraprim C. Integrating the HLA RTI Services with Scilab.

Sixth IEEE International Symposium on Cluster Computing and the Grid; 2006.

[16] Ravn O, Andersen NA. Using DIS for Linking Simulation and Animation in Simulink and

VRML. In Proc. 8th IFAC Symposium on Computer Aided Control System Design CACSD

2000; 2000.

[17] Mukbil A, Stroganov P, Durak U, Hartmann S. Towards a Distributed Simulation Toolbox

for Scilab. Workshop der ASIM/GI Fachgruppen STS und GMMS; 2016.

[18] The Portico Project. http://www.porticoproject.org. As of 19th Sep 2016.

[19] Jefferson DR. Virtual Time. ACM Transactions on Programming Languages and Systems

(TOPLAS); 1985.

[20] IEEE 1516.3-2003. IEEE Recommended Practice for High Level Arcihtecture (HLA)

Federation Development and Execution Process (FEDEP); 2003.

[21] IEEE 1730-2010. IEEE Recommended Practice for Distributed Simulation Execution and

Engineering Process (DSEEP); 2010.

http://www.prismtech.com/
http://www.forwardsim.com/
http://www.porticoproject.org/

